شماره ركورد :
654730
عنوان مقاله :
A Novel Framework for Logo Detection and Recognition from Document Images
عنوان فرعي :
يك چارچوب جديد آشكارسازي و تشخيص لوگو در تصاوير متني
پديد آورندگان :
پورقاسم، حسين نويسنده دانشگاه آزاد اسلامي واحد نجف آباد , , جعفرپيشه، امير سالار نويسنده دانشجوي دكترا Jafar Pisheh, Amir Salar
اطلاعات موجودي :
فصلنامه سال 1391 شماره 9
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
8
از صفحه :
66
تا صفحه :
73
كليدواژه :
document image , two-stage segmentation , Logo detection and recognition , hierarchical classification
چكيده فارسي :
Logo detection and recognition module is a vital requirement in official automation systems for document image archiving and retrieval applications. In this paper, we present a novel framework for logo detection and recognition based on sequential segmentation and classification strategy of document image. In this framework, using a two-stage segmentation algorithm (consisting of wavelet-based and threshold-based segmentation algorithms) and hierarchical classification by two multilayer Perceptron (MLP) classifiers and a k-nearest neighbor (KNN) classifier, a document image divides to text, pure picture and logo candidate regions. Ultimsately, in final decision, class of logo candidate region is determined based on pre-defined classes. In the hierarchical classification and logo recognition stages, the best feature space is selected by forward selection algorithm from a perfect set of texture and shape features. The proposed structure is evaluated on a variety and vast database consisting of the document and non-document images with Persian and international logos. The obtained results show efficiency of the proposed framework in the real and operational conditions.
چكيده لاتين :
Logo detection and recognition module is a vital requirement in official automation systems for document image archiving and retrieval applications. In this paper, we present a novel framework for logo detection and recognition based on sequential segmentation and classification strategy of document image. In this framework, using a two-stage segmentation algorithm (consisting of wavelet-based and threshold-based segmentation algorithms) and hierarchical classification by two multilayer Perceptron (MLP) classifiers and a k-nearest neighbor (KNN) classifier, a document image divides to text, pure picture and logo candidate regions. Ultimsately, in final decision, class of logo candidate region is determined based on pre-defined classes. In the hierarchical classification and logo recognition stages, the best feature space is selected by forward selection algorithm from a perfect set of texture and shape features. The proposed structure is evaluated on a variety and vast database consisting of the document and non-document images with Persian and international logos. The obtained results show efficiency of the proposed framework in the real and operational conditions.
سال انتشار :
1391
عنوان نشريه :
روشهاي هوشمند در صنعت برق
عنوان نشريه :
روشهاي هوشمند در صنعت برق
اطلاعات موجودي :
فصلنامه با شماره پیاپی 9 سال 1391
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت