پديد آورندگان :
اوحدي، وحيدرضا نويسنده استاد، گروه عمران، دانشكده مهندسي، دانشگاه بوعلي سينا، همدان Ouhadi, V.R. , پورزعفراني، مصطفي نويسنده دانشجوي كارشناسي ارشد، گروه عمران، دانشكده مهندسي، دانشگاه بوعلي سينا، همدان ,
كليدواژه :
Calcium carbonate , Temperature , جذب آب , Water absorption , حرارت , مقاومت فشاري محدود نشده , بنتونيت , Bentonite , unconfined compressive strength , كربنات
چكيده فارسي :
مشخصات خاك ها به ويژه كاني هاي ناشي از هوازدگي شيميايي از جمله خاك هاي رسي ب هشدت متاثر از حرارت است.
اين موضوع در كنار وجود كربنات به عنوان يكي از اجزاي اصلي خاكهاي رسي، به ويژه در مناطق خشك و نيمه خشك، مي تواند
موجب تغيير در رفتار مهندسي خاك شود. در پژوهش حاضر تاثير حرارت بر فرايند اندركنش مخلوط ماسه - بنتونيت و كربنات
كلسيم با استفاده از آزمايش هاي مختلف از جمله انقباض خطي، مقاومت فشاري محدود نشده و جذب آب ، مورد ارزيابي قرار
20 و 30 درصد كربنات به همراه 20 و 40 درصد ماسه با بنتونيت تركيب و در معرض ،10 ، گرفته است. بدين منظور مقادير 0
سطوح حرارتي متفاوت بين 25 تا 1100 درجه سانتي گراد قرار داده شدند. نتايج نشان دهنده آن است كه افزايش حرارت سبب
افزايش مقاومت نمونه ها تا دماي دي هيدروكسيلاسيون شده ولي در حرارت هاي بيش از دما ي دي هيدروكسيلاسيون ، مقاومت به
ميزان قابل ملاحظه اي كاهش يافته است. از سوي ديگر، افزايش درصد كربنات در يك دماي مشخص، باعث كاهش مقاومت و
انقباض خطي شده است. همچنين تغييرات جذب آب نمونه ها، در اثر افزايش حرارت، تابعي از درصد كربنات موجود در خاك و
محدوده حرارت اعمال شده است.
چكيده لاتين :
Soil properties, especially chemical weathering minerals such as clayey soils, are strongly
influenced by temperature. On the other hands, the existing of carbonate as one of the major
components of clayey soils in arid and semi-arid lands, and its effect on engineering
properties of the soils prove the necessity to study the simultaneous influence of carbonate
and temperature on the engineering behavior of clayey soils. In the present work, the
interaction between clay and carbonate in high temperatures has been investigated. Bentonite
were mixed with different percentages of carbonate and sand. The variations of added
carbonate were 0% (natural carbonate content), 10%, 20%, and 30%, respectively, and added
sand were 20% and 40%. The soil samples were carefully mixed with enough water to bring
them to their plastic limit and were kept in plastic bag for uniform-moisture distribution for a
period of 24 h. It was then sieved through a #10 mesh to ensure to achieve a uniform mixture.
Samples for testing were then prepared by compacting soil mixtures into cylinder mold in
three layers. The test specimen dimensions were 35 mm in diameter and 70 mm in height. The
clay specimens were allowed to air dry at room temperature for 24 h. Bentonite specimens
were kept in plastic bag to prevent development of cracks during air drying due to high crack
potential. The samples were then oven dried at 110 °C for a period of 24 h. The test specimens
were heated to temperatures of 300, 500, 700, 900 and 1100 °C, using programmable
Carbolite electric furnace. The specimens were placed in the electric furnace at room
temperature and then the temperature was increased at a rate of 3°C/min until the desired
temperature was reached. Once the treatment temperature was reached, it was held at that
stage for 2 h, then the furnace was turned off. The specimens were then allowed to cool
overnight in the closed furnace. After this curing condition, samples with different levels of
temperature including 25°C (laboratory temperature), 110, 300, 500, 700, 900 and 1100 °C
were used for experiments. The changes of physical and engineering properties of the soil
were studied by performing macro-structural tests such as linear shrinkage, water absorption
and unconfined compression.
The results show that as temperature increases close to the de-hydroxylation temperature,
strength gradually increases. At de-hydroxylation temperature, the strength significantly
increases, so that the strength of bentonite specimens increases 3 to 4 times. The strength ofbentonite specimens significantly decreased with increasing the heat over de-hydroxylation
temperature. This strength reduction was due to the formation of microscopic voids and pores
in the specimen. Analyzing the simultaneous influence of carbonate percentage and heating
indicate that the increase of carbonate percentage in a given temperature results in the
decrease of strength and the amount of this reduction is different in different temperatures. In
bentonite specimens, heating causes the water absorption to be decreased, however, the
increase of carbonate percentage results in the increase of water absorption in a given
temperature.