پديد آورندگان :
گندم زاده، دانیال نويسنده دانشجوی كارشناسی ارشد مكانیك بیوسیستم gandomzadeh, danial , روحانی، عباس نويسنده استادیار گروه مهندسی مكانیك بیوسیستم Rohani, Abbas , عباسپور فرد، محمدحسین نويسنده استاد گروه مهندسی مكانیك بیوسیستم Abbaspour-Fard, Mohammad Hossein , گلزاريان، محمود رضا نويسنده , , محمدزاده، علی نويسنده مدرس موسسه آموزشی بهار Mohammadzadeh, A. , ایزدی دربندی، ابراهیم نويسنده دانشیار، گروه زراعت و اصلاح نباتات Izadi Darbandi, Ebrahim
كليدواژه :
برد الكترونيكي , شبكه عصبي , ويژگي هاي آماري , كلاس بندي
چكيده فارسي :
این تحقیق در سال 1393 با هدف امكان سنجی تشخیص چند گونه علف هرز رایج شامل خرفه (Portulacaceae)، سلمه تره ).Chenopodium album L)، خارخسك (.Tribulus terrestris L)، تاج خروس خوابیده (.Amaranthus retroflexus L) و علف شور (Salsola iberica)، در مزرعه تحقیقاتی دانشگاه فردوسی مشهد با گسیل امواج فراصوتی و بررسی موج بازگشتی از گونه های علف هرز مذكور مورد مطالعه قرار گرفت. نتایج نشان داد كه وجود تفاوت در ویژگی های بافتی بین گونه های علف هرز، موجب تغییرات مقدار و الگوی دامنه موج فراصوت بازگشتی از آنها می شود. همچنین مقایسه میانگین ویژگی های آماری بین امواج فراصوتی بازگشتی از گونه های علف های هرز مختلف این اختلافات را تایید كرد. از شبكه عصبی چند لایه پرسپترون با الگوریتم آموزشی با نرخ یادگیری كاهشی برای جداسازی و شناسایی گونه های علف هرز استفاده شد. در گام اول اقدام به شناسایی همزمان تمام گونه ها از یكدیگر شد. نتایج مرحله آموزش شبكه عصبی نشان داد كه خطای تشخیص تنها برای سلمه تره برابر با 67/16 درصد است و خطای تشخیص سایر گونه ها برابر با صفر درصد است. اما درصد خطای تشخیص برای تمام گونه ها در مرحله آزمایش بیش از 50 درصد شد. بنابراین از روش كلاس بندیی ترتیبی دوتایی طی چهار مرحله استفاده شد. در این روش 11 شبكه عصبی طراحی شد و از بین آنها 4 شبكه عصبی انتخاب گردید. نتایج نشان داد كه به ترتیب در مرحله اول خارخسك، در مرحله دوم تاج خروس، در مرحله سوم خرفه به طور كامل شناسایی و از سایر گونه ها تفكیك شد. همچنین در مرحله چهارم دو گونه سلمه تره و علف شور به طور كامل از یكدیگر جدا شدند.
چكيده لاتين :
Introduction: Considering the importance of healthy and inexpensive agricultural production, it is necessary to seek ways for precisely discrimination of weeds in the field to minimize the use of herbicides. In this research the feasibility of weed detection due to the reflected ultrasonic waves from some common weeds including Portulacaceae, Chenopodium album L, Tribulus terrestris L, Amaranthus retroflexus L and Salsola iberica, was investigated.
Materials and Methods: An electronic circuit with several parts such as a microcontroller, a power supply (5 DC volts), a RS-232 output port, and an ultrasonic wave generator and detector was constructed. It emits a 40 KHz ultrasonic wave and receives the recursive wave which is reflected from the weed canopy. It can be mounted on an adjustable tripod that is aligned along the three main directions (X, Y, and Z) and can also be turned around the X axis. The data acquisition was accomplished in the research field of the College of Agriculture, Ferdowsi University of Mashhad. The experiments were performed by mounting the system at constant height of 4 cm from the crop canopy. To avoid interfering of the recursive wave with the emitted wave, the generator and the detector were placed far apart. For each experiment the temperature and the relative humidity were recorded in a check list. For the Neural Network the so called BDLRF algorithm was used for training the network and started with a relatively constant large step size of learning rate and momentum term . Before destabilizing the network or when the convergence is slowed down, these values are decreased monotonically (22). In this study Double Sequential Classification Method was used for weed discrimination. This classification method can better simulate the human procedure for classification of different objects, from each other. The human being at the first stage, and based on some distinguishable criteria classifies the things into some main groups and then sorts each group to some other distinguishable subgroups and this procedure will continue up to all things to be classified from each other. Therefore, if a feature can separate more class from others, it is selected as optimum feature. But the optimum feature can only separate the limited numbers of groups in each stage. Other groups are separated with other optimum feature in some sequence stages. In this study the Double Sequential Classification Method is employed for the calcification of the weed species.
Results and Discussion: Results showed that due to different surface and morphological characteristics of the crop canopy of the weed species under study, the pattern and the amplitude of the reflected ultrasonic waves are significantly different. The comparison of means of statistical features extracted from the reflected ultrasonic waves confirmed these differences. A Multi-Layers Perceptron (MLP) neural network, which was trained with a reduction learning rate, was developed and evaluated. The simultaneous separation of the five weed species showed that the error of detection during the training phase of Chenopodium album L was the highest among other species and was 16.67 percent, while the system was able to detect other species completely. However, the detection error for all species in the evaluation phase was more than 50 percent. Hence, a double sequential classification method was used through four sequential stages. In this method 11 neural networks were designed and finally four neural networks were selected. Results showed that Tribulus terrestris L was identified and separated completely from other species in the first stage, subsequently, Amaranthus retroflexus L in the second stage and Portulacaceae in the third stage, respectively. The remaining two species including, Chenopodium album L and Salsola iberica were successfully discriminated in the fourth stage.
Conclusion: Results showed that this method can be a promising technique for real time identification and discrimination of different weed species in the field. It can be replaced with the conventional, laborious and expensive methods to reduce the final costs of agricultural production. Besides, it can reduce the consumption of herbicides in the fields. However, some efforts are required to implement the technique on the existing herbicide applicators or as a new machine for precision agriculture.