شماره ركورد :
940142
عنوان مقاله :
بهبود تخمين ارتفاع جنگل به كمك بهينه سازي ماتريس پراكنش به روش تغيير پايه پلاريزاسيون مطالعه موردي: جنگل هاي شمالي سوئد
عنوان به زبان ديگر :
Improvement of Forest Height Estimation using Scattering Matrix Optimization by Altering Polarization Bases Case Study: Swedish boreal forests
پديد آورندگان :
حسيني،‌سميرا دانشگاه صنعتي خواجه نصيرالدين طوسي - دانشكده مهندسي نقشه برداري , عبادي، حميد دانشگاه صنعتي خواجه نصيرالدين طوسي - دانشكده مهندسي نقشه برداري , مقصودي، ياسر دانشگاه صنعتي خواجه نصيرالدين طوسي - دانشكده مهندسي نقشه برداري
اطلاعات موجودي :
فصلنامه سال 1396 شماره 101
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
12
از صفحه :
33
تا صفحه :
44
كليدواژه :
اينترفرومتري پلاريمتري , بهينه سازي , تخمين ارتفاع , ماتريس انتقال , ماتريس پراكنش
چكيده فارسي :
در دهه هاي اخير توجه زيادي به تخمين زيست توده جنگلي شده است. تهيه نقشه هاي جامع و صحيح از زيست توده جنگلي جهت مدل كردن چرخه كربن جهاني و كاهش گازهاي گلخانه اي از اهميت بسيار زيادي برخوردار است. روش هاي قديمي براي تخمين زيست توده بر اساس مقادير بازپراكنش ها به كمك آناليزهاي رگرسيون صورت مي پذيرفت. مشكل اصلي اين روش ها، سطح اشباع پايين آنها در طول موج ها و پلاريزاسيون هاي مختلف بدليل در نظر نگرفتن پارامترهاي ساختاري بود. به كمك تكنيك هاي اينترفرومتري، تحقيقات به سمت استخراج پارامترهاي ساختاري سوق پيدا كرد. ارتفاع يكي از پارامترهاي ساختاري مي باشد كه جهت تخمين زيست توده جنگلي مي تواند استفاده شود. بهبود روش هاي بازيابي ارتفاع درختان نقش بسيار مهمي در استخراج صحيح زيست توده جنگلي ايفا مي كند. در اين مقاله يك روش جديد به منظور بهينه سازي ماتريس پراكنش به كمك تغيير پايه پلاريزاسيون جهت تخمين ارتفاع معرفي شده است. به كمك تغيير ماتريس پراكنش در پايه پلاريزاسيون هاي مختلف براي هر دو تصوير پايه و پيرو، پارامترهاي همبستگي مختلف استخراج شده و با روش هاي مختلف تخمين ارتفاع، ارتفاع درختان تخمين زده شده است. داده هاي مورد بررسي، داده هاي تمام پلاريمتري از سنجنده هوايي SETHI در باند P مي باشد كه در منطقه جنگل هاي شمالي واقع در Remningstorp در جنوب كشور سوئد برداشت شده است. نتايج نشان مي دهد كه روش هايي كه در آنها تغيير فاز وجود دارد در اثر تغيير پارامترهاي هندسي بيضوي، بهبود چشمگيري داشته اند بطوري كه روش هاي فاز حجم تصادفي برروي زمين با 0/76= R2 و 3/76 = RMSE و تفاضلي مدل رقومي با 0/69-= R2 بهترين بهبود در نتايج را داشته اند و روش وارونگي دامنه همدوسي كه با مقدار كوهرنس ارتفاع را استخراج مي كند، با 0/17= R2 بهبود چنداني در نتايج آن ملاحظه نشده است.
چكيده لاتين :
Introduction Estimation of forest biomass has received much attention in recent decades including assessing the capability of different sensor data (e.g., optical, radar, and LiDAR)and the development of advanced techniques such as synthetic aperture radar (SAR) polarimetry and polarimetric SAR interferometry for forest biomass estimation. Accurate estimation of forest biomass is of vital importance to model global carbon cycle. Deforestation and forest degradation will result in the loss of forest biomass and consequently increases the greenhouse gases. Radar systems including SAR have a great potential to quantify biomass and structural diversity because of its penetration capability. These systemsare also independent of weather and external illumination condition and can be designed for different frequencies and resolutions.Moreover, SAR systems operating at lower frequencies such as L- and P-band have shown relatively good sensitivity to forest biomass. Regression analysis is among the common methods for evaluation forest biomass which have been investigated for many years on different areas. This analysis is based on the correlation between backscattering coefficient values and the forest biomass. However, previous studies demonstrated that such approaches are very simple and they do not consider structural effects of different species. One of the restrictions and limitations of these methods is the low saturation level. The level of saturation is lower in higher frequencies and vice versa. Considering the structural parameters, researchers have tried to use the interferometry techniques.Forest canopy height is one of the important parameters that can be used to estimate Above Ground Biomass (AGB) using allometric equations. Materials &Methods Recentforest height retrieval methods rely on model based interferometric SAR analysis. The random volume over ground (RVOG) model is one of the most common algorithms. This method considers two layers, one for the ground under the vegetation and one for the volumetric canopy. This model has been investigated in different forest environments (e.g. tropical, temperate and boreal forests). Estimation of forest biomass based on forest height using allometric equations can overcome radar signal saturation to some extent.Improvement of Forest height estimation can play an important role to retrieve accurate forest biomass estimation. In this paper, a new method using scattering matrix optimization is introduced to extract forest height by changing polarization bases. Scattering matrices for slave and master images have been extracted by changing polarization bases. Then polarimetric interferometry coherences have been calculated and forest height was estimated by various forest height methods including DEM Difference, coherence amplitude inversion, RVOG Phase, Combined and RVOG. Results& Discussion P-band full Polarimetric synthetic aperture radar (SAR) images acquired by SETHI sensor over Remningstorp (a boreal forest in south of Sweden) were investigated for forest biomass estimation.Mean of Lidar height values which fall in each shapefile was used to check corresponding results with the heights of retrieval methods. The results of tree height retrieval methods without changing polarization bases between PolInSAR tree height and LIDAR height show that three methods including coherence amplitude inversion, RVOG Phase and RVOG have low R2 value. DEM Difference and combined methods yielded better results in comparison with the other three aforementioned methods; however the results are not satisfactory.DEM Difference method underestimated the tree height compared to that of LIDAR. This is perhaps due to the fact that volume phase center does not lie at the top of the tree.Temporal decorrelation decreases volume correlation, consequently small values in the SINC function lead to generate large values in results; therefore RMSE of coherence amplitude method is relatively high.New master and slave scattering matrixes in arbitrary polarization basis were extracted by altering  and  in transformation matrix.Results show that RVOG phase has the best result with R2=0.76 and RMSE=3.76. Following this method, DEM difference method shows R2=-0.69.It is likely that methods which include phase information by changing geometrical parameters, in transformation matrix (e.g. RVOG phase and DEM difference) significantly increase the tree height accuracy.On the other hand, methods that only apply magnitude of coherence such as coherence amplitude method do not show notable improvement for retrieving tree height. Conclusion Robustness of forest height estimation using Scattering Matrix Optimization by changing Polarization Bases was studied in this paper.PolInSAR data was acquired by SETHI on Remningstorp, a boreal forest in south of Sweden. Results indicated that forest height retrieval methods which included phase parameter shows remarkable improvement by changing the geometrical parameters for height estimation.Therefore RVOG phase method with R2=0.76, RMSE=3.76m and DEM Difference method with R2=-0.69 gave the best results, whereas coherence amplitude method which only included magnitude of coherence with R2=0.17 showed the lowest correlation.
سال انتشار :
1396
عنوان نشريه :
اطلاعات جغرافيايي سپهر
فايل PDF :
3615734
عنوان نشريه :
اطلاعات جغرافيايي سپهر
اطلاعات موجودي :
فصلنامه با شماره پیاپی 101 سال 1396
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت