شماره ركورد :
951101
عنوان مقاله :
تخمين عملكرد گندم آبي با استفاده از روش الگوريتم تركيبي شبكه هاي عصبي مصنوعي و الگوريتم ژنتيك
عنوان فرعي :
Prediction of Irrigated Wheat Yield by using Hybrid Algorithm Methods of Artificial Neural Networks and Genetic Algorithm
پديد آورنده :
باریكلو علی
پديد آورندگان :
علمداری پریسا نويسنده استادیار گروه خاكشناسی Alamdari Parisa , مروج كامران نويسنده استادیار گروه خاكشناسی Moravej kamran , ثروتي مسلم نويسنده
سازمان :
دانش آموخته كارشناسی ارشد گروه خاكشناسی
تعداد صفحه :
12
از صفحه :
715
تا صفحه :
726
كليدواژه :
مدلسازي , مديريت , ويژگي هاي ديريافت و زوديافت , كشاورزي پايدار
چكيده فارسي :
از اهداف كشاورزی پایدار افزایش راندمان تولید محصولات كشاورزی با اعمال مدیریت¬های صحیح بوده و لازمه آن درك كامل¬تر روابط بین میزان تولید محصول با ویژگی¬های خاك و محیط می¬باشد. نخستین قدم یافتن روش¬های مناسبی است كه توانایی تعیین روابط صحیح بین ویژگی‌های اراضی با مقدار عملكرد محصول باشد. هدف از این مطالعه بررسی كارایی مدل تركیبی ژنتیك-عصبی در برآورد عملكرد گندم آبی در غرب شهرستان هریس می¬باشد. منطقه مطالعاتی در شمال¬شرق تبریز واقع شده و رژیم حرارتی و رطوبتی خاك به¬ترتیب مزیك و اریدیك هم مرز با زریك می¬باشد. گندم، هندوانه و یونجه از مهم¬ترین محصولات زراعی منطقه است. بدین منظور تعداد 80 خاكرخ در مزارع گندم انتخاب و از هر افق ژنتیكی نمونه خاك اخذ و به آزمایشگاه منتقل و تجزیه¬های فیزیكی و شیمیایی روی نمونه¬ها صورت گرفت. جهت مدل¬سازی لایه¬های ورودی شامل ویژگی¬های شیمیایی، فیزیكی، زمین¬نما و خروجی عملكرد مشاهده شده گندم آبی می¬باشد. نتایج آنالیز حساسیت نشان داد كه نیتروژن كل، فسفر قابل جذب، شیب، درصد سنگریزه، واكنش خاك و ماده آلی به عنوان ویژگی¬های اراضی مهم در عملكرد گندم در اراضی مورد مطالعه هستند. نیتروژن كل خاك به¬عنوان موثرترین ویژگی در كیفیت و كمیت عملكرد گندم بر اساس ماتریس همبستگی پیرسون ایجاد شده بین ویژگی¬ها و عمكرد می¬باشد. كارایی مدل ژنتیك- عصبی با موفقیت برای تشریح رابطه بین عملكرد گندم و ویژگی¬های زودیافت صورت گرفت، به¬طوری¬كه دارای ضریب تببین بالا (87/0) و میانگین انحراف مربعات خطا كم (5/473) بود. نهایتاً می¬توان نتیجه گرفت، مدل هیبریدی می¬تواند به¬عنوان یك ابزار قدرتمند در تخمین عملكرد گندم باشد.
چكيده لاتين :
Introduction: In recent decades, the most important issue for agricultural activities is maximizing the productions. Today, wheat is grown on more lands than any other commercial crops and continues to be the most important food grain source for humans. Sustainable agriculture is a scientific activity based on ecological principles with focus on achieving sustainable production. It requires a full understanding of the relationships between crop production with soil and land characteristics. Furthermore, one of the objectives of sustainable agriculture is enhancing the agricultural production efficiency through applying proper management, which requires a deep understanding of relationships between production rate, soil and environment characteristics. Hence, the first step in this process is finding appropriate methods which are able to determine the correct relationships between measured characteristics of soil and environment with performance rate. The aim of this study was evaluating the performance of neuro-genetic hybrid model in predicting wheat yield by using land characteristics in the west of Herris City. Materials and Methods: The study area was located in the northwest of east Azarbaijan province, Heris region. In this study, 80 soil profiles were surveyed in irrigated wheat farms and soil samples were taken from each genetic horizon for physical and chemical analyses. In this region, soil moisture and temperature regimes are Aridic border to Xeric and Mesic, respectively. The soils were classified as Entisols and Aridisols. We used 1×1 m woody square plots in each profile to determine the amounts of yield. Because of nonlinear trend of yield, a nonlinear algorithm hybrid technique (neural-genetics) was used for modeling. At first step, the average weight of soil characteristics (from depth of 100 cm) and landscape parameters of selected profiles were measured for modeling according to the annual growing season of wheat. Then, land components and wheat yield were considered as inputs and output of model, respectively. For this reason, genetic algorithm was investigated to train neural network. Finally, estimated wheat yield was obtained using input data. Root mean square error (RMSE) and Coefficient of determination (r2), Nash-Sutcliffe Coefficient (NES) indices were used for assessing the method performance. Results and Discussion: The sensitivity analysis of model showed that soil and land parameters such as total nitrogen, available phosphorus, slope percentage, content of gravel, soil reaction and organic matter percentage played an important role in determining wheat yield in the studied area. The soil organic matter and total nitrogen had the highest and lowest correlation with wheat yield quantity and quality, respectively, indicating the total nitrogen was the most important soil property for determination of wheat yield in our studied area. We found that network learning process based on genetic algorithms in the learning process had lower error. The findings showed that beside of confirming the desired results in the case of using sigmoid activation function in the hidden layer and linear activation function in the output layer of all neural networks, it is demonstrated that the proposed hybrid technique had much better results. These findings also confirm better prediction ability of neural network based on error back propagation algorithm or Levenberg-Marquardt training algorithm compared to other types of neural network confirms. Conclusion: Using nonlinear techniques in modeling and forecasting wheat yield due to its nonlinear trend and influencing variables is inevitable. Recently, genetic algorithms and neural network techniques is considered as the most important tools to model nonlinear and complex processes. Despite the advantages of these techniques there are a lot of weaknesses. Imposing specific conditioned form by researchers in the techniques of genetic algorithms and stopping neural network learning at the optimal points are the main weaknesses of these techniques, while searching for global optimal point and not imposing a specific functional forms are the robustness of genetic algorithm techniques and neural networks, respectively. Results of this study indicated that the proposed hybrid technique had much better results. Correlation coefficient (0.87) and average deviation square error (473.5) were high and low, respectively. It can be concluded that the surveyed soil properties have very strong relationship with the yield. Implementation of appropriate land management practices is thus necessary for improving soil and land characteristics to maintain high yield, preventing land degradation and preserving it for future generations required for sustainable development.
سال انتشار :
2017
عنوان نشريه :
آب و خاك
عنوان نشريه :
آب و خاك
لينک به اين مدرک :
بازگشت