پديد آورندگان :
احمدي، فرشاد دانشگاه شهيد چمران اهواز , رادمنش، فريدون دانشگاه شهيد چمران اهواز , پرهام، غلامعلي دانشگاه شهيد چمران اهواز - گروه آمار , ميرعباسي نجف آبادي، رسول دانشگاه شهركرد - گروه مهندسي آب
كليدواژه :
توزيع حاشيه اي , دوره بازگشت توام , دوره بازگشت شرطي , مفصل تجربي , همگني
چكيده فارسي :
تحليل فراواني جريان هاي كمينه به منظور برنامه ريزي جهت تامين نيازهاي مختلف، مديريت كمي و كيفي جريان رودخانه و بررسي خصوصيات و تاثير خشكسالي ها بر اكوسيستم آبي منطقه از اهميت ويژه اي برخوردار است. با وجود ماهيت پيچيده كم آبي ها اكثرا از روش هاي تك متغيره به منظور تحليل فراواني جريان هاي كمينه استفاده شده است. در اين مطالعه جريان هاي كمينه حوضه آبريز دز در دوره آماري 1391- 1335 با استفاده از توابع مفصل در محل اتصال سرشاخه ها مورد بررسي قرار گرفت. بدين منظور ابتدا سري هاي هفت روزه جريان كمينه در ايستگاه هاي مورد مطالعه استخراج و سپس همگني آنها با استفاده از آزمون من - كندال بررسي شد. نتايج نشان داد كه سري هاي جريان كمينه هفت روزه حوضه آبريز دز همگن بود.در مرحله بعد، 11 تابع توزيع مختلف به داده هاي جريان كمينه برازش داده شد و در نهايت توزيع لجستيك به عنوان توزيع حاشيه اي مناسب ايستگاه هاي مورد مطالعه انتخاب گرديد. پس از انتخاب توزيع حاشيه اي، از توابع مفصل خانواده هاي ارشميدسي و حدي براي تحليل فراواني توام جريان كمينه هفت روزه استفاده شد. نتايج نشان داد كه مفصل گامبل- هوگارد براي جفت داده هاي ايستگاه هاي سپيد دشت سزار و سپيد دشت زاز بيشترين تطابق را با تابع مفصل تجربي داشته است. براي بررسي دوره بازگشت وقايع در حالت توام، از دوره بازگشت توام در دو حالت «يا» و «و» و دوره بازگشت توام شرطي استفاده شد. بر اساس نتايج به دست امده از تحليل توام جريان كمينه دو سرشاخه متصل به هم مشخص شد كه دو رودخانه سپيد دشت سزار و سپيد دشت زاز به طور متوسط هر 200 سال يكبار به صورت هم زمان مي تواند در معرض خشكسالي شديد قرار گيرد.
چكيده لاتين :
Introduction: Hydrological phenomena are often multidimensional and very complex. Hence, the joint
modeling of two or more random variables is required to investigate the probabilistic behavior of them. To this
aim, the copulas can be efficiently utilized to derive multivariate distributions. In addition, the copula functions
can quantify the dependence structure between correlated random variables. Estimation of low flow is necessary
in different fields of hydrological studies such as water quality management, determination of minimum required
flow at downstream for producing electricity and cooling purposes, design of intakes, aquaculture, design of
irrigation systems and assessing the effect of long-term droughts on ecosystems. Low flows can be determined
based on low flow indices. There are many types of low flow indices which among them the 7-days low flow
with different return periods are more popular. Heretofore, numerous studies have been performed in the field of
univariate analysis of river low flows, but the low flows of two river branches can be simultaneously analyzed
using copula functions. Copula is a flexible approach for constructing joint distribution with different types of
marginal distributions. Indeed, the copula is a function which links univariate marginal distributions to construct
a bivariate or multivariate distribution function.
Materials and Methods: Hydrological phenomena often have different properties, where for their frequency
analysis; they may be examined either individually or concurrently. These variables are not independent, rather
they are interconnected and the change in one of them affects the other. Thus, the univariate frequency analysis
can bring about some error due to neglecting the interdependence between these random variables. the copula is
a function which joint the marginal distribution functions for constructing a bivariate or multivariate function.
Development of copula functions is alleged to Sklar (1959) who described how univariate distribution can be
jointed to form a multivariate distribution. Generally a copula function is a transfer of a multivariate function
from , d
to 0,1d
. This transfer separate marginal distributions from F function and the copula
function, C, is only related to dependency among variables, therefore it present a full description of inner
dependency structure. In other words, the Sklar’s theorem states that for multivariate distributions, the inner
dependency among the variables and univariate marginal distributions is separated and the dependency structure
explained by copula function. The copula function divided into many families which among them then the
Archimedean copula is widely used in multivariate analysis of hydrological events and also has an explicit
formula for its cumulative form which is an important advantage in comparison with elliptical copula functions
that have not explicit formula. Application of the copulas can be useful for the accurate multivariate frequency
analysis of hydrological phenomena. There are many copula functions and some methods were proposed for
estimating the copula parameters. Since the copula functions are mathematically complicated, estimating of the
copula parameter is an effortful work. In this study, five different copula functions including, Ali - Mikhail –
Haq, Clayton, Frank, Gal ambos and Gumbel-Hougaard were used for multivariate analysis of 7-days low flow
in Dez basin.
Results and Discussion: In this study, the low flow of the Dez basin at junction of river branches during
1956-2012 were investigated using copula functions. For this purpose, firstly the 7-days low flow series of
considered stations were extracted and then the homogeneity of the series was examined using Mann-Kendall
test. The results showed that the 7-days low flow series of Dez basin are homogenous. In the next step, 11
different distribution functions were fitted on low flow series and the Logistic distribution was selected as the
best fitted marginal distribution for considered stations. After specifying the marginal distributions, the
Archimedean and Extreme value families of copula functions were used for multivariate frequency analysis of 7-
days low flow. For this study, the best-fitted copula was specified in two ways. For the first specification, the
nonparametric empirical copula was computed and compared with the values of the parametric copulas. The
parametric copula that was closest to the empirical copula was defined as the most appropriate choice. The
second specification was based on the statistical approach. The results indicated that for pair data of Sepid Dasht
Sezar and Sepid Dasht Zaz stations, the Gumbel-Hougaard copula had the most accordance with empirical
copula. In order to investigate the joint return periods, we used the joint return periods in two cases of AND and
OR forms and also conditional joint return period.
Conclusion: Based on the obtained results from joint analysis of the low flow at upstream of the junction of
two river branches, it was specified that two river branches of Sepid Dasht Sezar and Sepid Dasht Zaz may
experience sever simultaneous drought events every 200 years.