شماره ركورد :
961772
عنوان مقاله :
ارزيابي عملكرد شبكه عصبي مصنوعي (ANN) و ماشين بردار پشتيبان (SVM) در تخمين مقادير روزانه تبخير (مطالعه موردي: ايستگاه‏هاي هواشناسي تبريز و مراغه)
عنوان فرعي :
Evaluation of the Performance of Artificial Neural Network and Support Vector Machine Models in Estimation of Daily Evaporation amounts ( Case study: Tabriz and Maragheh Synoptic Station
پديد آورنده :
عيسي زاده محمد
پديد آورندگان :
شيرزاد منير نويسنده دانشجوي كارشناسي ارشد سنجش از دور و gis، دانشكده جغرافيا و برنامه‏ريزي، دانشگاه تبريز , رضايي بنفشه مجيد نويسنده
تعداد صفحه :
18
از صفحه :
151
تا صفحه :
168
كليدواژه :
ماشين بردار پشتيبان , مراغه , شبكه عصبي مصنوعي , تخمين تبخير , تبريز
چكيده فارسي :
تبخير مولفه‏اي اساسي در چرخه هيدرولوژي است و نقش مهمي در مديريت منابع آب دارد. در اين تحقيق عملكرد مدل‏هاي شبكه عصبي مصنوعي (ANN) و ماشين بردار پشتيبان (SVM) در تخمين تبخير روزانه ارزيابي شده است. داده‏هاي روزانه هواشناسي ميانگين دما، سرعت باد، فشار هوا، رطوبت نسبي، بارش، دماي نقطه شبنم، و ساعت آفتابي ايستگاه‏هاي سينوپتيك تبريز و مراغه، به منزله ورودي مدل‏هاي ANN و SVM، براي تخمين تبخير روزانه استفاده شد. نخست ده تركيب مختلف از هفت ورودي و سپس ورودي‏هاي منفرد به منظور تخمين تبخير به‏كار گرفته شدند. نتايج مدل‏هاي استفاده‏شده نشان داد كه هر دو مدل ANN و SVM عملكرد قابل قبولي در تخمين تبخير دارند. ارزيابي نتايج استفاده از ورودي‏هاي تكي نشان داد كه به‏ترتيب كاربردِ پارامترهاي ميانگين دما و ساعت آفتابي‏ـ نسبت به پارامترهاي ديگر ـ نتايج بهتري در تخمين تبخير هر يك از ايستگاه‏ها داشته‌ است. بررسي‏هاي اين تحقيق نشان مي‏دهد كه اگرچه تفاوت معني‏داري بين نتايج سه تابع كرنل ماشين بردار پشتيبان وجود ندارد، تابع كرنل پايه شعاعي در مقايسه با توابع كرنل ديگر از دقت زياد و عملكرد بهتري در تخمين تبخير روزانه برخوردار است.
چكيده لاتين :
Introduction Evaporation is a fundamental component of the hydrology cycle and has an important role in water resources management. Daily evaporation is an important variable in reservior capacity, rainfall-runoff modeling, crop management and water balance. Measurement of actual evaporation is almost impossible, but evaporation can be estimated using several methods. There are two general viewpoint to estimation of evaporation: direct and indirect methods (Tezel 2015, Terzi 2013). It is inoperative to measure the evaporation by direct methods in all locations. Direct methods usually used proximate reservoirs or irrigation projects. The indirect methods of evaporation estimation need to various input data that are not easily available. Moreover, the evaporation have very complex and nonlinear process that simulation of its complex process using simple methods is impractical. In recent years, the artificial intelligent methods such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been successfully utilized to modeling the hydrological nonlinear process such as rainfall, precipitation, rainfall-runoff, evaporation, temperature, water quality, stream flow, water level and suspended sediment, etc (Tezel 2015). Therefore this research evaluates the performance of ANN and SVM models in daily evaporation estimation. Materials and methods The daily climatic data, air temperature, wind speed, air pressure, relative humidity, rainfall, dew point temperature and sun shine hours of Tabriz and Maragheh synoptic stations are used as inputs to the ANN and SVM models to estimate the daily evaporation. For this purpose, 75 percent of the daily evaporation data were selected to calibrate the models and 25 percent of the data were used to validate the models. Different combinations of seven input and then individual inputs applied in order to evaporation estimation. ANNs are parallel information processing systems consisting of a set of neurons arranged in layers. These neurons provide suitable conversion functions for weighted inputs. In this study, we used Multilayer feed-forward perceptron (MLP) network. The MLP trained with the use of back propagation learning algorithm. The back-propagation training algorithm is a supervised training mechanism and is normally adopted in most of the engineering applications. The neurons in the input layer have no transfer function. The logarithmic sigmoid transfer function was used in the hidden layer and linear transfer function was employed as an activation function from the hidden layer to the output layer, because the linear function is known to be robust for a continuous output variable. The optimal number of neuron in the hidden layer was identified using a trial and error procedure by varying the number of hidden neurons from 1 to 20. In recent years, SVM as one of the most important data-driven models, has been considered in this regards. This model is a useful learning system based on constrained optimization theory that uses induction of structural error minimization principle and results a general optimized answer. The SVM is a computer algorithm that learns by example to find the best function of classifier/hyperplane to separate the two classes in the input space. The SVM analyzes two kinds of data, i.e. linearly and non-linearly separable data. For a given training data with N number of samples, represented by , where x is an input vector and y is a corresponding output value, SVM estimator (f) on regression can be represented by: Where w is a weight vector, b is a bias, “.” denotes the dot product and is a non-linear mapping function. Typically, three kernel functions, radial basis, polynomial and linear are applied in SVM that use of each function with various parameters for evaporation estimation may have different results. Therefore, it is necessary to evaluate the accuracy of each of these functions and select the appropriate kernel function for evaporation estimation. Two performance criteria are used in this study to assess the goodness of models fit, which are: Correlation Coefficient (CC) and Root Mean Square Error (RMSE). Results and discussion In this paper, ten different combinations of seven inputs and then individual inputs applied in order to estimate the evaporation. Results of evaporation estimation in Tabriz station indicate that the first and eighth combinations have minimum RMSE and maximum CC in test period of ANN and SVM models, respectively. Also results of evaporation estimation in Maragheh station indicate that the first and Seventh combinations have minimum RMSE and maximum CC in test period of ANN and SVM models, respectively. The ANN model using first combination including air temperature, wind speed, air pressure, relative humidity, rainfall, dew point temperature and sun shine hours climate data, achieves to the amount of 2.12 (mm) and 0.78 for RMSE and R statistics in test period for Tabriz station. The SVM model using eighth combination including wind speed, air pressure, relative humidity, rainfall, dew point temperature and sun shine hours climate data, achieves to the amount of 2.17 (mm) and 0.78 for RMSE and R statistics in test period for Tabriz station. Evaporation estimation of Maragheh station using ANN and SVM models, respectively achive to 1.62 (mm) and 1.43 (mm) for RMSE statistic in test period. In next step, individual input results show that ANN model has better estimation of evaporation values in Tabriz station and SVM model in Maragheh station. Also results indicate that the SVM and ANN models have better estimation of evaporation values using individual inputs including average temperature and sun shine hours compaired to other inputs, respectively. Conclusion The results of used models indicate that both ANN and SVM models have acceptable performance in evaporation estimation. Evaluation results show that the average temperature is better input than other six parameters in estimation of evaporation. The investigations of this study indicate that although there is no significant difference in the results of three kernel functions of support vector machine, but the Radial Basis kernel function has high accuracy and better performance in estimation of daily evaporation in comparison to other kernel functions.
سال انتشار :
1396
عنوان نشريه :
پژوهش هاي جغرافياي طبيعي
عنوان نشريه :
پژوهش هاي جغرافياي طبيعي
لينک به اين مدرک :
بازگشت