عنوان مقاله :
سنتز و تحليل يك گروه جديد از مكانيزم هاي موازي 4 درجه آزادي با استفاده از نظريه ي تبديلات خطي و نظريه ي پيچه
عنوان به زبان ديگر :
TYPE SYNTHESIS AND ANALYSIS OF A NEW SET OF 4-DOF PARALLEL ROBOTS USING LINEAR TRANSFORMATION AND SCREW THEORY
پديد آورندگان :
رستمي، اسماعيل دانشگاه تهران - دانشكده ي مهندسي برق و كامپيوتر , طالع ماسوله، مهدي دانشگاه تهران - دانشكده ي مهندسي برق و كامپيوتر
كليدواژه :
مكانيزم موازي , نظريه ي تبديلات خطي , نظريه ي پيچه , سنتز نوعي
چكيده فارسي :
در اين مقاله با استفاده از تركيب نظريه ي تبديلات خطي و نظريه ي پيچه به سنتز يك گروه از مكانيزم هاي 4 درجه آزادي موازي پرداخته شده است. نظريه ي پيچه يكي از معيارهاي حركتي است كه براي تعيين درجات آزادي و سنتز شاخه هاي مكانيزم ها استفاده مي شود. مكانيزم هاي سنتزشده داراي الگوهاي حركتي شامل سه درجه آزادي حركتي دوراني و يك درجه آزادي حركتي انتقالي (T1R3)، دو درجه آزادي حركتي دوراني و دو درجه آزادي حركتي انتقالي (T2R2)، و سه درجه آزادي حركتي انتقالي و يك درجه آزادي حركتي دوراني (R1T3)هستند. مكانيزم هاي سنتزشده با استفاده از نظريه ي پيچه تحليل شدند. سپس الگوي حركتي هر مكانيزم بررسي شد و ماتريس ژاكوبين مربوط به مكانيزم ها به دست آمد. تحليل ها نشان دهنده ي اين بود كه مكانيزم ها درجات آزادي و الگوهاي حركتي مورد نظر را دارند. ماتريس هاي ژاكوبين بيان كننده ي استقلال حركتي قابل قبول اين مكانيزم ها بود.
چكيده لاتين :
In this paper، by using the theory of linear transformations، we investigate the type synthesis of 4-DOF parallel mechanisms performing different motion patterns are investigated. Most of the applications in various fields require limited movement and less than 6 degrees of freedom. The parallel mechanism with 4 degrees of freedom has many applications in different areas، such as industry and، medicine. Thus، the type synthesis of these mechanisms are is of paramount importance. This theory، which is one of the motion criteria، is applied to determine the degrees of freedom، and then synthesize the limbs of mechanisms. Unlike the classical theories of motion، in the case of parallel mechanisms and mechanisms with closed chains، this approach leads to promising and remarkable results. In this paper، 4-DOF parallel mechanisms performing three rotational DOFs and one translational DOF (3R1T)، two rotational DOFs and two translational DOFs (2R2T)، and three translational DOFs and one rotational DOF (3T1R) are synthesized. These mechanisms belong to a group of complex mechanisms which have closed chains in the structure of their limbs. The parallelogram loop is considered to synthesizes these complex mechanisms which helps to achieved mechanisms with lower motion decoupling. After synthesizing and obtaining the appropriate degrees of freedom and motion patterns، the mechanism with less kinematic complexities is selected، and then analyzed via the screw theory. Using the screw theory، without complex derivative of inverse kinematic problems، Jacobian mechanism can be obtained. In this analysis، the degrees of freedom and motion patterns of each mechanism are tested and the Jacobian matrix related to each one is obtained. Using the screw theory، Jacobian matrix of all mechanisms are is obtained. The results indicate that the mechanisms have the appropriate degrees of freedom and motion patterns، and thus، the theory of linear transformations works properly. Moreover، the Jacobian matrices for these mechanisms have acceptable motion decoupling which implies the non-complexity in the velocity equations of these mechanisms.
عنوان نشريه :
مهندسي مكانيك شريف
عنوان نشريه :
مهندسي مكانيك شريف