پديد آورندگان :
برومند رضازاده، الهه , كوچكي،عليرضا دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه زراعت و اصلاح نباتات , رضواني مقدم، پرويز دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه زراعت و اصلاح نباتات , نصيري محلاتي، مهدي دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه زراعت و اصلاح نباتات , لكزيان، امير دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه خاكشناسي
كليدواژه :
نسبت C:N , كيسه لاشبرگ , غيرمتحرك شدن , ظرفيت زراعي
چكيده فارسي :
به منظور بررسي روند تغييرات نيتروژن معدني در خاك و چگونگي تاثيرپذيري آن از ميزان رطوبت خاك و كيفيت بقاياي گياهي اضافه شده، تحقيقي در دانشكده كشاورزي دانشگاه فردوسي مشهد در قالب طرح اسپليت پلات در زمان بر پايه طرح كاملاً تصادفي با سه تكرار به اجراء درآمد. بقاياي گياهي شامل گندم (Triticum aestivum L.)، كلزا (Brassica napus L.)، ذرت (Zea mays L.)، سويا (Glycin max L.) و پنبه (Gossypium hirsutum L.) بود و از خاك بدون بقايا نيز به عنوان شاهد استفاده شد. رطوبت خاك شامل سه سطح30، 60 و 100 درصد ظرفيت زراعي بود. در اين مطالعه از روش كيسه لاشبرگ استفاده شد و نمونه برداري در طي زمان با فواصل 10، 20، 50، 90، 140، 190، 240، 290، 340 و 390 روز پس از شروع آزمايش صورت گرفت. نتايج نشان داد كه كيفيت بقايا تاثير به سزايي بر ميزان نيتروژن معدني خاك داشت و افزودن بقاياي گياهي سبب غيرمتحرك شدن آن شد. همچنين نيتروژن معدني در خاك داراي بقاياي گياهي در ابتداي آزمايش (50-10 روز اول بسته به نوع بقايا) كاهش و سپس افزايش يافت. ميزان غيرمتحرك شدن نيتروژن در خاك داراي بقاياي گندم و پنبه (با نسبت كربن به نيتروژن بالاتر) بيش از بقاياي ساير گياهان بود. در هيچ يك از خاك هاي داراي بقاياي گياهي، معدني شدن خالص نيتروژن مشاهده نگرديد و بالاترين ميزان نيتروژن معدني مربوط به خاك شاهد بدون بقايا بود. رطوبت خاك نيز به عنوان يكي از عوامل مهم تعيين كننده ميزان تجزيه بقايا و فعاليت زيست توده ميكروبي، معدني شدن نيتروژن را تحت تاثير قرار داد، به نحوي كه با افزايش رطوبت خاك ميزان نيتروژن معدني نيز افزايش نشان داد.
چكيده لاتين :
Introduction
Soil organic matter is one of the main sources of carbon, nitrogen, phosphorus and sulfur and the agronomic
value of organic materials depends on their nitrogen release. Nitrogen dynamics varies considerably depending
on soil properties (e.g. soil texture and moisture content), residue location (incorporation or surface placement
residues) and intrinsic characteristics of residues, especially carbon to nitrogen ratio. The presence of
carbonaceous compounds easily accessible by microorganisms increases organic nitrogen mineralization
whereas more recalcitrant organic residues with large amounts of lignin reduce nitrogen release. Nitrogen
content of residue which is rich in N releases and accumulates in soil during decomposition. Considerable
portion of nitrogen content of non-leguminous residues harvested at green stage, with C/N ratio lower than 25,
might be also released when the residues are incorporated into the soil.
Material and Methods
In order to study the nitrogen mineralization patterns of residues with different qualities and soil moisture
contents, an experiment was conducted at Faculty of Agriculture, Ferdowsi university of Mashhad, Iran as slitplot
in time arrangement based on a completely randomized design with three replications. Five mature plant
residues including wheat (Triticum aestivum L.), oilseed rape (Brassica napus L.), maize (Zea mays L.), soybean
(Glycine max L.) and cotton (Gossypium hirsutum L.) were used. Un-amended soil was considered as control.
Soil moisture consisted of three levels of 30, 60 and 100 percentage of field capacity. Litterbag method was used
and sampling was conducted in 10, 20, 50, 90, 140, 190, 240, 290, 340 and 390 days after incubation (25°C and
darkness) to measure mineral nitrogen. Net cumulative N mineralized was calculated as the difference between
mineral nitrogen in each sampling and at day 0 and net N mineralization rate was defined as mineralized
nitrogen divided by incubation period. Data analysis was performed using Minitab 16. Means were compared by
Duncansʼ test at a significance level of 0.05.
Results and Discussion
Results indicated that soil mineral nitrogen was almost the same in all three levels of soil moisture in early
day of the experiment and increased during incubation period. Mineral nitrogen was significantly affected by
residue quality and soil moisture content. Soil moisture as a key factor in residue decomposition and microbial
biomass activity affected nitrogen mineralization as the highest (59.9 mg.kg-1) and lowest (26.9 mg.kg-1) mineral
nitrogen was found in soil moisture content of 100 and 30% FC, respectively. Net cumulative N mineralized was
increased in un-amended control soil during the incubation period and reached to 61 mg.kg-1 in day 390 but a
different trend was observed in amended soils. In these treatments mineral nitrogen changes had two distinct
phases: the first phase included mineral nitrogen immobilization and the intensity and duration of this phase was
related to residue type and especially their initial nitrogen content. The second phase lasted to the end of the
incubation period, included nitrogen mineralization. Soil amendment with plant residue led to soil nitrogen
immobilization. The highest immobilization was observed in soils containing wheat (-7 mg.kg-1) and cotton (-5.2
mg.kg-1) residues (containing high carbon to nitrogen ratio). No net N mineralization was found in amended
soils. The highest net N mineralization rate was found in control followed by soils amended with soybean
residues (0.14 mg.kg-1.d-1) and the lowest in soils amended with wheat and cotton.
Conclusion
Results of the present study indicated that the net N mineralization rate and soil mineral nitrogen was
significantly affected by residue quality and residues with higher nitrogen content led to nitrogen
immobilization. Soil moisture also played an important role in nitrogen mineralization as higher mineral nitrogen
was found in soils with higher moisture content.