شماره ركورد :
967085
عنوان مقاله :
طراحي، ساخت و ارزيابي گودال‌كن هيدروليكي موتوردار كاربر پياده جهت ايجاد چال كود
عنوان فرعي :
Design, Development and Evaluation of a New Motorized Hydraulic Hole-digger for Spot Treatment
پديد آورنده :
ملاپور سامان
پديد آورندگان :
كلانتری داود نويسنده گروه مكانیك بیوسیستم، دانشكده مهندسی زراعی، دانشگاه علوم كشاورزی و منابع طبیعی ساری Kalantari D , رجبی وندچالی مجید نويسنده گروه مهندسی مكانیك، دانشگاه آزاد اسلامی واحد جویبار Rajabi Vandechali M
سازمان :
دانشكده مهندسی زراعی، دانشگاه علوم كشاورزی و منابع طبیعی ساری
تعداد صفحه :
14
از صفحه :
235
تا صفحه :
248
كليدواژه :
توان , طراحي , ظرفيت ماشين , گودال‌كن , مصرف ويژه سوخت
چكيده فارسي :
در پژوهش حاضر طراحی، ساخت و آزمون یك نوع گودال‌كن هیدرولیكی جدید مناسب برای باغ‌های كوچك ارائه شده است. گودال‌كن ساخته شده دارای عمق كار 30 و قطر كار 20 سانتی‌متر، سرعت دورانی بین 100 تا 160 دور بر دقیقه و حداكثر توان 6/5 اسب بخار می‌باشد. ارزیابی دستگاه در دو باغ مركبات با بافت رسی سیلتی و لومی شنی با آزمون فاكتوریل در قالب طرح كاملاً تصادفی و در سه تكرار اجرا شد. رطوبت میانگین خاك به‌عنوان عامل اول در دو سطح رطوبت بالا و رطوبت پایین (به‌ترتیب 24/85 و 16/12 درصد در خاك با بافت لومی شنی و 25/95 و 16/48 درصد در خاك با بافت رسی سیلتی) و عمق گودال به‌عنوان عامل دوم در سه سطح عمق كم، عمق متوسط و عمق زیاد (10، 20 و 30 سانتی‌متر) در نظر گرفته شد. با توجه به نتایج به‌دست آمده، كم‌ترین مقدار مصرف ویژه سوخت دستگاه (0/0014 لیتر بر گودال) در عمق گودال كم (cm 10) و رطوبت خاك بالا (25/95 درصد) و در بافت رسی سیلتی به‌دست آمد. ظرفیت ماشین در عمق كاری 30 سانتی متر در خاك رسی سیلتی و در رطوبت بالا و پایین به‌ترتیب برابر با 90 و 88 گودال در هر ساعت و در خاك لومی شنی و در رطوبت بالا و پایین به‌ترتیب برابر با 101 و 95 گودال در هر ساعت به‌دست آمد. بیشترین توان (kW 2/548) مورد نیاز دستگاه در عمق cm 30 و رطوبت پایین و در بافت رسی سیلتی رخ داد. هم‌چنین كم‌ترین گشتاور (N.m 75/99) و توان (kW 1/034) در عمق cm 10 و رطوبت بالا و در بافت لومی شنی به‌دست آمد.
چكيده لاتين :
Introduction Nowadays, the best method for fertilizing trees is spot treatment via hole-digger. Conventional mechanical hole-diggers have several drawbacks such as auger’s non-continuous and limited speeds due to using a mechanical gearbox, and risks of getting stuck inside the hole and motor reaction force to the operator. On the other hand, a three-point hitch hole-digger has problems such as the lack of maneuverability in confined spaces and high prices. Meanwhile, preparation of these hole-diggers by most farmers and gardeners has no economic justification. Thus, in this research it has been aimed to handle the mentioned problems and to optimize the working quality of hole-diggers via designing and manufacturing a new hydraulic hole-digger. Materials and Methods To start design the machine, displacement volume and power requirement of the hydro-motor and consequently displacement volume requirement of a hydro-pump were calculated using the appropriate formulas (70.83 cm3, 2.3 kW & 7.5 cm3, respectively). According to available hydro-motors and hydro-pumps in the market and using obtained values of displacement volume, an orbital hydro-motor, BMR-80 model with the maximum torque of 220 N.m and an external gear pump REXPORT-2APF8 with displacement volume of 8 cm3 and flow rate of 12 L.min-1 were chosen. In the following, hydro-pump’s parameters were used to select the internal combustion engine. The engine power requirement was 2.875 kW (3.85 hp); thus according to the available engines in the market, a single cylinder gasoline engine, WX168F-1 model that made in Kato company of China with 6.5 hp power and maximum speed of 3600 rpm was chosen. To transmit the power from the engine to the hydro-pump, a coupling DK-42 model was used. Also, two pressure gauges, LB-250 model with maximum pressure of 250 bars were used in the entrance and the exit of the hydro-motor. An hydraulic oil tank with total volume of 24 liters was made from a sheet metal with thickness of 3 mm. The helical auger used in this research, was made in china by LIONS Company with cone tip, total diameter of 200 mm and pitch of 180 mm. The fabricated digger has a working depth and diameter of 30 cm & 20 cm, respectively; rotational speed between 100-160 rpm and maximum power equal to 6.5 hp. In order to evaluate the stress distribution in the auger set, the static analysis based on maximum dynamic torque exerting on auger’s axle and maximum dynamic force exerting on auger’s blades, was used in SOLIDWORKS 2013 software. The maximum force 214.07 kgf (2100 N) proportional to the maximum exerting torque (210 N.m) from soil to the edge of the auger’s blade were considered in the modelling. Farm experiments were carried out in two citrus gardens with silty-clay and sandy-loam texture based on factorial test in Completely Randomized Design with three replications. Soil moisture content as high and low humidity levels (24.85% and 16.12% in sandy-loam and 25.95% and 16.48% in silty-clay) as the first factor and soil depth as the second factor varied in three levels of low, medium, and high (10, 20 and 30 cm), respectively. The measured parameters consisted of specific fuel consumption, machine efficiency, auger torque, auger power and used energy. To determine the auger’s torque, the oil pressure measurement method with two manometers was used in the entrance and the exit of the hydro-motor. After measuring the time and power needed to dig pits, for determining the used energy, the area under the power-time graph was calculated in Excel software. Also, to determine the fuel consumption during the experiments, the filled fuel tank method was used. Data analysis including analysis of variance (Anova), mean comparisons and interaction between the parameters were performed using the SPSS 22 software. Results and Discussion The numerical stress analysis results of the auger showed that the maximum von - Mises stress is occurred in the position of the blade-auger axis connections, with a magnitude of 86 MPa. The obtained experimental results in this study indicated that influence of soil depth and moisture content on the measured parameters were significant. in both soil textures and the influence of soil moisture on machine efficiency was non-significant in the silty-clay texture. With increasing soil depth, measured parameters excluding machine efficiency were increased in both soil textures. In high depth and also in low moisture, regarding to the increasing soil bulk density and shear strength, more torque was needed for the rotating auger in the soil that this has led to an increasing in specific fuel consumption of the device. Regarding the results obtained in this study, minimum specific fuel consumption value of the device (0.0014 liter pit-1) was obtained at the low working depth (10 cm) and the high soil moisture (25.95%) in the silty-clay soil. The hole-digger working capacity at 30 cm working depth and soil moisture content as high and low humidity levels in silty- clay obtained equal to90 and 88 pits per hour and in sandy-loam obtained equal to 101 and 95 pits per hour, respectively. Also, the maximum device’s power (2.548 kW) occurred in deep soil (30 cm) and low soil moisture in silty-clay texture. Conclusions Stress analysis and field qualitative observations results indicated that the fabricated device has sufficient resistance and strength against maximum torque from tested soils. Field evaluation of the fabricated machine showed that pit digging operations in soil is not appropriate in low moisture content because of the high fuel consumption and environmental pollution issues.
سال انتشار :
1397
عنوان نشريه :
ماشين هاي كشاورزي
عنوان نشريه :
ماشين هاي كشاورزي
لينک به اين مدرک :
بازگشت