شماره ركورد :
973409
عنوان مقاله :
شبيه‌سازي عددي اثر امواج دروني ناشي از جزر و مد بر روي انتشار صوت در درياي عمان
عنوان به زبان ديگر :
Numerical simulation of the effect internal tide on the propagation sound in the Oman Sea
پديد آورندگان :
حسيني، حبيب اله دانشگاه مازندران - دانشكده علوم دريايي و اقيانوسي - گروه فيزيك دريا , اكبري مسب، محمد دانشگاه مازندران - دانشكده علوم دريايي و اقيانوسي - گروه فيزيك دريا , خليل آبادي، محمدرضا دانشگاه صنعتي مالك اشتر
تعداد صفحه :
11
از صفحه :
215
تا صفحه :
225
كليدواژه :
مدل MITgcm , درياي عمان , تلفات انتقال , امواج دروني ناشي از جزر و مد
چكيده فارسي :
محيط دريا، محيطي تلاطمي است. پديده‌هاي مختلفي همچون امواج دروني، جبهه‌ها و جزر و مد و غيره كه باعث تغييراتي در سرعت شاره در محيط مي‌شوند در نتيجه باعث ايجاد تغييرات در انتشار صوت مي‌شوند. در اين مطالعه، با استفاده از مدل MITgcm به‌صورت دو بعدي، در شرايط غيرهيدرواستاتيك و كاملاً غيرخطي شكل‌گيري اين امواج داخلي به‌واسطه جزر و مد داخلي در حضور تپه در خليج عمان بررسي شد. سپس با استفاده از خروجي هيدرو فيزيكي مدل (دما و شوري)، در يك دوره جزر و مدي، پارامتر سرعت صوت (رابطه مكنزي) محاسبه گرديد. نتايج تأثير پرتوهاي موج داخلي منتشر شده و بازتابيده شده بر پروفايل سرعت صوت را مي‌توان به‌صورت اغتشاشات بين لايه‌اي در امتداد اين پرتوها نشان داد. براي بررسي اثر فركانس‌هاي مختلف در يك سيكل جزر و مدي، تلفات انتقال آكوستيكي مدل‌سازي شد و نتايج نشان داد كه در فركانس پايين، انرژي صوتي بيشتر در محيط نفوذ مي‌كند و در فركانس بالا اثرات زيادي مشاهده نمي‌شود. نتايج نشان داد كه حضور جزر و مد داخلي باعث فشردگي و باز شدگي پرتوهاي صوتي در محيط و افزايش برد امواج آكوستيكي در منطقه در برخي زمان‌ها جزر و مدي مي‌شود.
چكيده لاتين :
The ocean is a random medium having both deterministic and nondeterministic characteristics. This behavior often leads to the difficulty in performing such underwater applications as telemetry and tomography. Propagation of acoustic rays in the ocean depends on temperature, salinity and density (Frosch 1964). While pressure is primarily controlled by depth, temperature and salinity variations in the ocean due to currents, the surface mixed layer, eddies, internal waves and other oceanographic features. These features affect the structure of the temperature and salinity fields, which in turn determines the sound velocity fields. Furthermore, these features change both in time and space, modifying the temperature, salinity and sound velocity fields. Other oceanographic features which affect acoustic propagation are internal tides and waves. Internal tides are internal waves in the ocean with tidal frequencies. As they propagate they alter the temperature structure and consequently the sound velocity fields. A primitive-equation model (MIT General Circulation Model (MITgcm)) with tidal forcing provided the temperature and salinity fields, from which the horizontal and vertical dependence of sound speed fields of the Oman Gulf were generated. This model solves the fully nonlinear, non-hydrostatic Navier-Stokes equations under the Boussinesq approximation for an incompressible fluid with a spatial finite volume discretization on an orthogonal computational grid. The model formulation includes implicit free surface and partial step topography. The Makenzi formula for sound velocity was used to calculate the sound speed from the potential temperature, salinity and pressure fields. Using these sound speed fields and the Bellhop acoustic ray tracing software, the effect of internal tide on sound propagation was investigated. Both ray paths and Transmission Loss (TL) were analyzed for dependencies on the tidal cycles. This program traces acoustic rays along a 2-D sound speed field, which varies both horizontally and vertically. It was designed to “achieve fast, accurate wavefront, and eigenray travel time predictions” and is based on Bowlin’s RAY program (Dushaw and Colosi 1998). In the sill region, the topography is supercritical with respect to the M2 internal tides. The calculations of the sound field were performed for a harmonic source operating at frequencies of 100, 400,800 and 1500 Hz at a depth of 350m. In the different scenarios of simulations of propagation sound, the calculations were performed during a period tide cycly (at hours 3, 9, 15 and 21). The results of the modeling of sound propagation with nonlinear internal waves impact on the sound propgation during the period tide is as follows (Freitas, 2008): 1- Propagation of the sound during a period of internal tide leads to energy of sound being expanded and compressed at some points. At a frequency of 300 Hz, the sound scattering occurs intensively in the environment, due to fact that the wavelength source of acoustic is order of wavelength of internal tide (fine structure). As a result, fewer blind spots are seen in the environment. 2- During a period of the internal tide, the basic structure of the sound velocity profile is not similar for all hours. 3- Internal tidal waves in the hours of 9, 15 and 21 over the hill lead to the, intensity of acoustic pressure increase and leading to the convergence of sound beams in this region.
سال انتشار :
1397
عنوان نشريه :
فيزيك زمين و فضا
فايل PDF :
3685731
عنوان نشريه :
فيزيك زمين و فضا
لينک به اين مدرک :
بازگشت